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Abstract: We consider a recently introduced generalization of the Ising model in which individual
spin strength can vary. The model is intended for analysis of ordering in systems comprising agents
which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’,
‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable
properties of nodes and interactions between them, we study the model on a complex network where
both the spin strength and degree distributions are governed by power laws. We show that in the
annealed network approximation, thermodynamic functions of the model are self-averaging and we
obtain an exact solution for the partition function. This allows us derive the leading temperature and
field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections
at the interface of different phases. We find the delicate interplay of the two power laws leads to new
universality classes.

Keywords: Ising model; scale-free network; self-averaging; steepest descent

1. Introduction

It is almost futile, and perhaps impossible, to comprehensively list the advances in
understanding of various phenomena in physics and beyond that were achieved due to
the Ising model. Excellent reviews of the one-hundred year history of the model [1–6]
are supplemented by discussions in other papers of this Special Issue. This paper has
been written for the Special Issue of Entropy ’Ising Model: Recent Developments and Exotic
Applications’. We think it is therefore more beneficial to open our paper with two first-hand
accounts that concern Ernst Ising, the person and the model. The first of these is of a
historical nature and concerns another body of work by the present authors and their
colleagues. The second, rather methodological account, will bring us closer to the subject
of studies of new physics presented in this paper.

For a quarter of a century, the Ising lectures have facilitated the emergence of different
initiatives, both spontaneously and by design, that both review and advance Ising model-
related research [7]. This workshop started in Lviv (Ukraine) in 1997 with ’traditional’
statistical physics and has recently broadened its scope to encompass a more general
context of complex systems. The lectures became the subject of a review series [8–13] and
gradually the workshop gave rise to various research projects centered around the Ising
model and its history. Historical documents collected to date, and displayed publicly with
permission of Ernst Ising’s family, include his dissertation [14] and its shortened version
which was published in Hamburg in 1924 [15]. They also include memoirs of Ernst’s wife,
Johanna (Jane) Ising [16], as well as a recent publication that includes memoirs of their son
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Thomas [17]. It was through this collaborative atmosphere of the workshop, and in the
context of a broader L4 Collaboration in Statistical Physics of Complex Systems [18], that
the problem considered below emerged.

As mentioned, the second remark brings us closer to the scientific subject of this paper;
it concerns a special feature which made the Ising model so popular for descriptions of
collective behavior in multitudes of systems. In its original form, as presented in Ising’s
thesis, this feature is binarity—representation of the state of an agent as from a pair of
binary oppositions. It is to a large extent due to this feature that the model has been (and
we believe will continue to be) applied in almost all fields where binarity plays a core
role [17,19,20]. Some generalizations of the Ising model lose this feature. An example
is the q-state Potts model [21,22] which keeps the discrete symmetry of the Ising model,
generalizing it from Z2 to Zq. As a result, although each agent (spin) can take on only a
finite number of states, the binarity is lost for any q 6= 2. Another popular generalization,
the O(m)-symmetrical model [23,24], enables an infinite number of states for a single agent
because the symmetry is continuous at m 6= 1.

Here, we address ordering phenomena in systems of agents that are not necessarily
physical in nature with the special role that is played by spin models in complex networks
in mind [20,25]. Recently, we have suggested another generalization of the Ising model
that tackles such circumstances by keeping binarity of the Ising model but relaxing the
condition of fixed spin length on each site [26]. Within the model, the length of each spin is
considered as a quenched random variable with a given distribution function and hence
the observables are calculated by the usual Gibbs averaging over the (up and down) spin
configurations as well as over the random spin length distribution. The model is related to
(but differs from) other spin models that are used to study the impact of structural disorder
on collective behavior [27–34] and it may be useful in analysis of ordering in magnetic or
ferroelectric systems of particles with polydisperse elementary moments [35,36]. Another
obvious field of applicability of this model is understanding peculiarities of ordering
processes in systems containing agents that, although being of binary character (‘+’ or ‘−’,
‘up’ or ‘down’, ‘yes’ or ‘no’), differ in strength of expression [37,38].

An example is illustrated in Figure 1. The structure of the network is used to model
the underlying interactions in a system of interest, be they of specific chemical, biological,
social, or economic origin. In a recent short communication [26], we reported on the
peculiarities of the generalized Ising model when the random spin length is governed by a
power-law decaying distribution function. We obtained an exact solution for this model on
complete and Erdős-Rény graphs as well as commented on the phase diagram of this model
on an annealed scale-free network. The analytic solution for this last case has never been
displayed to date and is a subject of this paper. The rest of the paper is organized as follows.
In Section 2, we formulate the model and demonstrate that the partition function of the
model possesses an important feature: it is self-averaging. This fact essentially facilitates
calculations of thermodynamic functions as displayed in Section 3. We apply the steepest
descent method to get exact results on the thermodynamic limit. We also analyze the phase
diagram and show how an interplay between two different power laws, one governing the
network structure and another one governing spin properties, defines universal features of
critical behavior. Conclusions and outlook are given in Section 4 and asymptotic estimates
for the integrals that enter thermodynamic functions are derived in Appendix A.



Entropy 2021, 23, 1175 3 of 18

2|| S

4|| S

3|| S

3|| S

3|| S

1|| S

2|| S

4|| S

4k 3k

3k

4k

4k

1k

1k

1k

Figure 1. Ising model with varying spin length (strength) as a model for a social phenomenon. Each
individual is represented as a complex network node of a given degree ki (i.e., a number of persons
connected to it via social links) and given strength Si. One may consider spreading of positive (spins
up) and negative (spins down) emotions in a social network.

2. Model

Well-studied generalizations of the Ising model include the m-vector [23,24] and the
Potts [21,22] model. Instead of a discreet scalar variable σi = ±1, the former considers
a classical vector variable ~σi that can point in any direction in an m-dimensional space.
The Potts model, on the other hand, maintains discrete variables, but relaxes the number
of single-site spin states. Here, we consider another generalization of the Ising model.
The new model preserves the binary character of the spin variables but allows them to
change their absolute value in a continuous and random manner [26]. To achieve this, we
endow the spins with ‘strength’ that can vary through a random variable S with a given
probability distribution function q(S). Below, we consider the case where this distribution
function is characterized by a power-law decay:

q(S) = cµS−µ, Smin ≤ S ≤ Smax, (1)

with the normalization constant cµ and µ > 2 to ensure finiteness of the mean strength 〈S〉
at Smax → ∞. As mentioned in the Introduction, the model mimics inhomogeneities in
many-particle (multi-agent) systems of different natures, that may range from polydisperse
magnets or ferroelectrics [27–36] to various complex social or economical systems [37,38]. In
turn, the choice of the distribution function in the form of a power law allows both to proceed
with analytic calculations as well as to gain access to various regimes of polydispersity by
tuning exponent µ.

Considering the critical behavior of a spin system on a complex network, special
attention has been paid to scale-free networks, which are characterized by a power-law
decay of a node degree distribution function:

p(K) = cλK−λ, Kmin ≤ K ≤ Kmax, (2)
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where p(K) is the probability that any given node has degree (number of links) K, cλ is a
normalization constant, and λ > 2. It is well established by now that the Ising model on
a scale-free network has a non-trivial critical behavior: depending on the value of λ, it is
characterized by different critical exponents [39–41]. For example, when λ > 5, the critical
exponents coincide with the mean-field ones observed for regular lattices. In the region
3 < λ < 5, the exponents become λ dependent. When λ = 5, logarithmic corrections to
scaling appear.

Below, we consider a generalized Ising model with varying spin strength on a scale-
free network. Doing so, we analyze how an interplay of power laws (1) and (2)—the first
governing network structure and the second governing agents’ strengths—impacts critical
behavior. To proceed, we first formulate the annealed network approximation we will be
dealing with.

2.1. Ising Model on an Annealed Network

Following Refs. [42–45], we define an annealed network as an ensemble of networks of
N nodes each, with a given degree arrangement {K} = (K1, K2, ..., KN), maximally random
under the constraint that their degree distribution is a given one. The linkage between
nodes is taken to fluctuate for each fixed sequence {K}. Therefore, in the spirit of the
concept of annealed disorder [46], the partition function is to be averaged with respect to
these fluctuations. This is different from quenched disorder, when for each fixed sequence
{K} network links are fixed too and therefore the free energy is averaged. In this latter case,
the configurational model serves as a counterpart of the annealed network (see, e.g., [47]).

To construct an annealed network of N nodes, one assigns to each node i a random
variable (label) ki taken from the distribution p(k) and the probability of a link between
two nodes is defined as:

pij =
kik j

N〈k〉 + O(1/N2) , (3)

with 〈k〉 = 1
N ∑l kl . One can show that the value of the random variable ki indicates the

expected value of the node degree: EKi = ∑j pij = ki whereas its distribution p(k) defines
node degree distribution p(K).

In the presence of a homogeneous external magnetic field H, the Hamiltonian of the
(usual) Ising model on an annealed network reads:

H = −1
2 ∑

i 6=j
Jijσiσj − H ∑

i
σi , σi = ±1, (4)

where the second sum spans all N network nodes, the first is over all their pairs and Jij is an
adjacency matrix with matrix elements equal to J if nodes are connected and 0 otherwise:

Jij =

{
J, pij ,
0, 1− pij .

(5)

For the fixed sequence of random variables {k} = (k1, ......, kN), the partition function is
obtained by averaging with respect to random annealed links {J}:

ZN({k}) = 〈Spσe−βH〉{J} , (6)

where
Spσ(. . . ) = ∏

i
∑

σi=±1
(. . . ) , (7)

β = T−1 is the inverse temperature and the averaging over links reads, cf. Equation (5):

〈(. . . )〉{J} = ∏
i<j

[
(. . . )Jij=J pij + (. . . )Jij=0(1− pij)

]
. (8)
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In turn, obtained after averaging over random linking, the partition function ZN({k})
depends on the particular choice of random variable (label) sequence {k}. Recall that this
sequence was taken as a fixed one, i.e., quenched. Therefore, the observable free energy FN
is to be obtained by averaging the sequence-dependent free energies FN({k}) as:

FN = 〈FN({k})〉{k} = −T ∏
i

∑
ki

p(ki) lnZN({k}) . (9)

It is worth mentioning here another prominent feature of the annealed network: as we
will explicitly show below, the partition function ZN({k}) is self-averaging, i.e., it does not
depend on a particular choice of {k}: ZN({k}) ≡ ZN . This leads to an obvious relation:

FN = −T ∏
i

∑
ki

p(ki) lnZN = −T lnZN , (10)

which means that the free energy is a self-averaged quantity too and avoids averaging of
the logarithm of partition function, facilitating calculations on annealed networks.

2.2. Ising Model with Random Spin Length on an Annealed Network

The model we consider in this study [26] relaxes the restriction on the fixed spin length
in the Hamiltonian (4). Similar to the Ising model, we preserve the binary character of spin
variables keeping global Z2 symmetry of the whole system, however, we allow each spin
to change its absolute value in a continuous and random fashion. Namely, we endow the
spins σi with ’strengths’ which vary from site to site through a random variable |σi| ≡ Si.
The Hamiltonian of the model reads:

H = −1
2 ∑

i 6=j
JijSiSj − H ∑

i
Si , Si = ±Si , (11)

where all notations are as in Equation (4) and Si are independent identically distributed
(i.i.d.) random variables with a given distribution function q(S) each. The Hamiltonian (11)
can be equivalently rewritten in terms of usual Ising spins of unit length, choosing variables
Si = σiSi:

H = −1
2 ∑

i 6=j
JijSiSjσiσj − H ∑

i
Siσi , σi = ±1 , (12)

We consider the case when the sequence {S} = (Smin, ...,Smax) is maximally random
under the constraint that their distribution is a given one. For the fixed sequence of random
variables {k} (that define network linkage) and {S} (that define local spin strength), the
partition function is obtained by averaging with respect to random annealed links {J}, cf.
Equation (6):

ZN({k}, {S}) = 〈Spσe−βH〉{J} , (13)

with the trace defined in (7).
Generally speaking, after the trace over spins has been taken, the partition function

also remains dependent on the (randomly distributed) spin strengths {S}, as explicitly
denoted in Equation (13). However, in the next subsection, we show that in the case of
annealed networks, the partition function ZN({k}, {S}) is a self-averaging quantity both
with respect to random variables k and S (ZN({k}, {S}) = ZN). Therefore, for the free
energy, similar to (10), one obtains:

FN = −T ∏
i

∑
ki

p(ki)∑
Si

q(Si) lnZN({k}, {S}) = −T lnZN . (14)

Our task now is to proceed in deriving the partition function of the Ising model with
varying spin length S on an annealed scale-free network when distributions of the random
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variables q(S), p(k) follow power-law behavior (1), (2). In the course of derivation, we
arrive at the conclusion about its self-averaging properties.

2.3. Self-Averaging

Substituting into (12) the adjacency matrix (5) and averaging over spin configurations,
we obtain:

ZN({k}, {S}) = Spσ

(
eβH ∑i Siσi ∏

i<j
(pije

βJ
2 ∑i 6=j SiSjσiσj + 1− pij)

)
. (15)

Taking into account that the spin product in (15) can attain only two values (σiσj = ±1), we
can make use of the equality

f (Kε) =
1
2
[ f (K) + f (−K)] +

ε

2
[ f (K)− f (−K)], ε = ±1, (16)

to obtain the partition function (15) in case ε ≡ σiσj, K ≡ βJSiSj:

ZN({k}, {S}) = SpS

(
eβH ∑i Siσi ∏

i<j

(
[cosh(βJSiSj) + σiσj sinh(βJSiSj)− 1]pij + 1

)
. (17)

Simplifying the expression for the partition function, one arrives at:

ZN({k}, {S}) = Spσ

(
eβH ∑i Siσi ∏

i<j
eln(aij+bijσiσj)

)
(18)

with
aij = 1− pij + pij cosh(βJSiSj), bij = pij sinh(βJSiSj). (19)

Making use of the equality (16) to represent ln(aij + bijσiσj) in (18), we obtain for the
partition function:

ZN({k}, {S}) = ∏
i<j

cijSpσ

(
e

1
2 ∑i 6=j dijσiσj+βH ∑i Siσi

)
, (20)

with

cij =
√

a2
ij − b2

ij, dij = ln
aij + bij

aij − bij
. (21)

The latter coefficients implicitly depend on pij via (19). Substituting these dependencies
into (21), one obtains:

cij =
√

1− 2pij + 2p2
ij + 2(1− pij) cosh(βJSiSj), (22)

dij = ln
1− pij + pije

βJSiSj

1− pij + pije
−βJSiSj

. (23)

Substituting pij into the expression for the partition function (20) and evaluating dij (23)
in the thermodynamic limit N → ∞ (i.e., in the limit of small pij ),

dij = ln
1− pij + pije

βJSiSj

1− pij + pije
−βJSiSj

' pijβJSiSj, (24)

we get:

ZN({k}, {S}) = Spσ exp
(

βJ ∑
i<j

kik jSiSjσiσj

N〈k〉 + βH ∑
i
Siσi

)
. (25)
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Now the interaction term in (25) attains a separable form and one can apply Stratonovich–
Hubbard transformation to take the trace over spins σi exactly and to obtain the following
expression for the partition function:

ZN({k}, {S}) =
∫ +∞

−∞
exp

(−N〈k〉Tx2

2J
+ ∑

i
ln cosh[Si(xki + H/T)]

)
dx . (26)

In this and all other partition function integral representations, we omit the prefactors
that are irrelevant for our analysis. As long as the functional dependence on the random
variables Si, ki in (26) is of the unary type, it is convenient to pass from sums over nodes
i to sums over the random variables ki, Si with a given distribution function p(k), q(S).
Considering the random variables to be continuous, one arrives at:

∑
i

f (ki,Si) = N
kmax

∑
kmin

Smax

∑
Smin

p(k)q(S) f (k,S) = N
∫ kmax

kmin

∫ Smax

Smin

p(k)q(S) f (k,S)dkdS . (27)

For an infinite system, we put kmax = Smax → ∞ and, without a loss of generality, we
choose the lower bonds equal to kmin = Smin = 2 and J = 1. Note, that the peculiarities
of the critical behavior we are interested in are caused by the behavior at kmax,Smax → ∞.
Although it is more natural to choose the lower integration bond equal to unity, scale-free
networks with kmin = 1 do not possess a spanning cluster for λ > λc (with λc = 3.48 for
discrete node degree distribution and λc = 4 for the continuous one) [48–50]. We avoid
this restriction by choosing kmin = 2. To have expressions symmetric in k,S , we choose
Smin = 2 too. Now it is straightforward to see that the partition function ZN({S}, {k})
does not depend on random variables k and S and is self-averaging:

ZN({k}, {S}) ≡ ZN =
∫ +∞

−∞
exp

(−N〈k〉Tx2

2
+ N

∫ ∞

2

∫ ∞

2
p(k)q(S) ln cosh[S(kx + H/T)]dkdS

)
dx . (28)

As one can see from Equation (28), the self-averaging property is quite general and
concerns any form of distributions p(k), q(S). Below, we use this expression to analyze
thermodynamics in the case when these distributions attain power-law forms (1), (2).

3. Thermodynamic Functions

It is convenient to pass in Equation (28) to integration over positive values of x and to
present the partition function as

ZN =
∫ +∞

0
e
−〈k〉x2T

2N

[
exp

(
N
∫ ∞

2

∫ ∞

2
p(k)q(S) ln cosh(

Skx
N

+ SH/T)dkdL
)
+

exp
(

N
∫ ∞

2

∫ ∞

2
p(k)q(S) ln cosh(

−Skx
N

+ SH/T)dkdS
)]

dx . (29)

Being interested in the leading asymptotics of the partition function at N → ∞ and
keeping the first leading term in H, we present the expression (29) in the following form:

ZN =
∫ +∞

0
e
−〈k〉x2T

2N

[
exp(I+λ,µ(x)) + exp(I−λ,µ(x))

]
dx , (30)

with

I±λ,µ(x) = N
[
cλcµ

( x
N

) λ+µ−2
2

Iλ,µ(ε)±
〈S2〉〈k〉

TN
xH
]

(31)

where

Iλ,µ(ε) =
∫ ∞

ε

∫ ∞

ε

ln cosh(kS)
kλSµ

dSdk (32)

and we have substituted distributions q(S), p(k) in power-law forms (1) and (2). The lower

integration bound ε = 2
√

x
N tends to zero, when N → ∞. The asymptotic expansions
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of the integral (32) at small ε (large N) are evaluated in the Appendix. Substituting
these expansions at different values of parameters λ, µ into Equation (30), we arrive at
corresponding expressions for the partition function that is evaluated at large N by the
steepest descent method. The final expression for the partition function reads:

ZN =
∫ +∞

0
e−NΦµ,λ(x) dx , (33)

where

Φµ,λ(x) =
〈k〉x2T

2
− cµcλx

λ+µ−2
2 Iλ,µ(

√
x)− 〈S

2〉〈k〉
T

xH (34)

and the linear term in H originates from the large N asymptotics of the hyperbolic cosine
in Equations (30) and (31).

Now it is straightforward to write for the Helmholtz free energy FN(T, H) per node:

f (T, H) = lim
N→∞

FN(H, T)/N = −T lim
N→∞

lnZN/N = TΦµ,λ(m) (35)

with m being the coordinate of function Φµ,λ(x) minimum:

d Φµ,λ(x)
d x

|x=m = 0,
d2 Φµ,λ(x)

d x2 |x=m > 0 . (36)

The resulting free energy is symmetric upon an interchange of indices µ↔ λ. Therefore,
below, we give the corresponding expressions for two cases: µ > λ and µ = λ. For the first
case, µ > λ, an asymptotic of the free energy at small m is governed by the lower value of
the exponents, i.e., by λ. Keeping the leading terms, we arrive at:

Φµ,λ(m) +
〈S2〉〈k〉

T
mH '



2 < λ < 3 : − cµcλiλ
µ−λ mλ−1 + 〈k〉T

2 m2,

λ = 3 : cµc3
2(µ−3)m2 ln 1

m + cµc3m2( i3
3−µ + 1

2(µ−3)2 ) +
〈k〉T

2 m2,

3 < λ < 5 : 〈k〉
2 (T − T0)m2 − cµcλiλ

µ−λ mλ−1,

λ = 5 : 〈k〉
2 (T − T0)m2 − c5cµ

12(µ−5)m4 ln 1
m + c5cµ(

1
12(µ−5)2 − i5

µ−5 )m
4,

λ > 5 : 〈k〉
2 (T − T0)m2 +

cµcλ

12(λ−5)(µ−5)m4,

(37)

with

T0 =
cµcλ

〈k〉(λ− 3)(µ− 3)
=
〈k2〉〈S2〉

23−µ23−λ〈k〉
, (38)

where 〈S2〉 =
∫ ∞

2 S
2q(S)dS , 〈k2〉 =

∫ ∞
2 k2 p(k)dk, the distribution functions q(S), p(k) are

given by Equations (1) and (2), and we have taken into account that Smin = kmin = 2 (see
explanation below Equation (27)). The coefficients iµ are listed in the Appendix and cµ, cλ

are normalizing factors of the distribution functions (1), (2).
For the case λ = µ, the leading behavior at small m reads:

Φµ,µ(m) +
〈S2〉〈k〉

T
mH '



2 < µ < 3 : −c2
µiµmµ−1 ln 1

m − c2
3iµ,µmµ−1 + 〈k〉T

2 m2,

µ = 3 : −i3c2
3m2 ln 1

m + [ 〈k〉T2 − c2
3i3,3]m2,

3 < µ < 5 : 〈k〉
2 (T − T0)m2 − c2

µiµmµ−1 ln 1
m ,

µ = 5 : 〈k〉
2 (T − T0)m2 − c2

5
24 m4(ln 1

m )2 − i5c2
5m4 ln 1

m ,

µ > 5 : 〈k〉
2 (T − T0)m2 +

c2
µ

12(µ−5)2 m4 ,

(39)

with the notations explained above. The signs of the coefficients iµ,λ do not matter in our
analysis.
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The estimates obtained above for the free energy asymptotics (37), (39) give one access
to the thermodynamic properties of the system of interest. As we will see below, parameters
µ and λ play a crucial role in governing the onset of ordering and define the universality
class of the generalized Ising model on a scale-free network. Before proceeding in analyzing
these expressions, it is instructive to recall the main peculiarities of the critical behavior
of two models, where each of these parameters has been considered separately: these are
the Ising model on a scale-free network with a node-degree distribution (2) [39,40,51] and
the generalized Ising model with a power-law spin strength distribution (1) on a complete
graph [26]. As is well established by now, the Ising model on a scale-free network remains
ordered at any finite temperature at low values of the node-degree distribution exponent
2 < λ ≤ 3. The order parameter decays with temperature as a power law m ∼ T1/(λ−3)

at 2 < µ < 3. The decay is exponential for λ = 3: m ∼ e−bT . With a further increase in
λ, a second order phase transition occurs for λ > 3 at finite T = T0 and H = 0: m = 0 at
the high-temperature phase, whereas the order parameter emerges as m ∼ τ1/(λ−3) in the
vicinity of the transition point at H = 0 with τ = |T− T0|/T0. The power-law temperature
behavior of the order parameter attains its usual mean-field value only when λ exceeds
five: m ∼ τ1/2, λ > 5. Logarithmic correction to scaling appears at marginal λ = 5:
m ∼ τ1/2| ln τ|−1/2. The phase diagram described above is sketched in Figure 2a. A similar
picture is observed when one analyzes the generalized Ising model with a power-law spin
strength distribution on a complete graph, i.e., when, in the spirit of the Kac model [52–58],
each graph node is connected to all other nodes. As has been demonstrated in Ref. [26],
the role of the global parameter is played in this case by the spin strength distribution
exponent µ. In turn, we summarize the behavior of the order parameter m for different
values of µ in Figure 2c.
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Figure 2. Phase diagram of the generalized Ising model with power-law distributed spin strength
on a scale-free network (b) is compared with those for the Ising model on a scale-free network
(a) and generalized Ising model with power-law distributed spin strength on a complete graph (c).
Asymptotics of the order parameter in different regions of µ, λ are shown explicitly. Corresponding
asymptotics at marginal values of µ, λ (lines and points in the plot) are summarized in Table 1.
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Now, with the free energy asymptotics for the generalized Ising model on a scale-free
network (37), (39) at hand, we are in a position to analyze the interplay of two parameters:
the first one governing individual spin strength (µ) and the second one governing its
connectivity (λ), on the emergent critical behavior. Temperature behavior of the order
parameter and the phase diagram that originate from this analysis are shown in Table 1
and in Figure 2b. The behavior is controlled by the parameter (λ or µ) with the smaller
value. When at least one of the parameters (λ or µ) is less than three, the system remains
ordered at any finite temperature and the order parameter decays as a power-law function
of T:

m '


2 < (µ, λ) < 3; µ > λ : T

1
λ−3 ,

2 < (µ, λ) < 3; µ = λ : T
1

λ−3 ,

2 < (µ, λ) < 3; µ < λ : T
1

µ−3 .

(40)

When either λ or µ equals three, and the other one is larger than three, m decays expo-
nentially. A second order phase transition occurs when both λ, µ > 3. Depending on the
values of λ, µ, the order parameter is characterized by different asymptotics. In the region
3 < µ < 5 (µ < λ), the critical exponents are µ dependent, and in region 3 < λ < 5 (µ > λ),
they are λ dependent and logarithmic corrections appear in these regions at λ = µ:

m '


3 < (µ, λ) < 5; µ > λ : τ

1
λ−3 ,

3 < (µ, λ) < 5; µ = λ : (τ| ln τ|−1)
1

λ−3 ,

3 < (µ, λ) < 5; µ < λ : τ
1

µ−3 .

(41)

Logarithmic corrections to scaling, however, of different values, also appear when λ = 5 or
µ = 5. We discuss these corrections in more detail later.

Table 1. Temperature behavior of the order parameter m at different values of µ and λ. The
asymptotic is governed by the smaller parameter from the pair (µ, λ).

2 < λ < 3 λ = 3 3 < λ < 5 λ = 5 λ > 5

2 < µ < 3 Equation (40) T
1

µ−3 T
1

µ−3 T
1

µ−3 T
1

µ−3

µ = 3 T
1

λ−3 e−bT e−bT e−bT e−bT

3 < µ < 5 T
1

λ−3 e−bT Equation (41) τ
1

µ−3 τ
1

µ−3

µ = 5 T
1

λ−3 e−bT τ
1

λ−3 τ
1
2 | ln τ|−1 τ

1
2 | ln τ|− 1

2

µ > 5 T
1

λ−3 e−bT τ
1

λ−3 τ
1
2 | ln τ|− 1

2 τ
1
2

The phase diagram in Figure 2b visualizes the behavior discussed above. There,
we show different regions in the λ− µ plane that are characterized by different critical
behaviors. The last is governed by the distribution with a ’fatter’ tail (smaller value from
the pair λ, µ). It is instructive to compare this diagram with those of Figure 2a,c. Indeed,
when one of the exponents in Figure 2b is larger than five (very fast decay of one of the
distributions (1) or (2)), the resulting diagram does not depend on this exponent any more.
One may speak about degeneracy of the critical behavior with respect to this exponent and
about reduction of the phase diagram Figure 2b to one of its corresponding counterparts, as
shown in Figure 2a,c. Interesting new phenomena emerge along the lines of the diagram in
Figure 2b, that separate regions with different asymptotics of the order parameter. Usually,
changes in the power law asymptotics of thermodynamic observables are accompanied
by logarithmic correction-to-scaling exponents (see, e.g., [59] and references therein). For
d-dimensional lattices, such corrections appear at upper critical dimensions, and for the
scale-free networks they are known to accompany the leading asymptotics at λ = 5. In our
analysis, we complete the picture by observing the lines in the λ− µ plane, where such
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corrections appear. Furthermore, new scaling laws are observed at the intersection of these
lines, as further outlined below.

To proceed with the analysis of critical behavior, we obtain expressions for the other
thermodynamic functions in the vicinity of the second order phase transition that occurs
for µ, λ > 3 at T = T0, H = 0. In particular, besides the order parameter, we evaluate
the leading critical exponents for the isothermal susceptibility χT , specific heat cH , and
magnetocaloric coefficient mT (the magnetocaloric coefficient is defined by the mixed
derivative of the free energy over magnetic field and temperature, mT = −T(∂m/∂T)H):

m ∼ τβ, χT ∼ τ−γ, cH ∼ τ−α, mT ∼ τ−ω, at H = 0 . (42)

m ∼ H1/δ, χT ∼ H−γc , cH ∼ H−αc , mT ∼ H−ωc , at τ = 0 . (43)

We also find the logarithmic terms that appear at marginal values of λ, µ and define the
logarithmic correction exponents for each of the above quantities:

A ∼ τΘ| ln τ|Θ̂ , H = 0 . A ∼ HΘc | ln H|Θ̂c , τ = 0 , (44)

where A is one of the thermodynamic functions (43), Θ is the critical exponent, and Θ̂ is a
corresponding logarithmic correction exponent. Values of the leading critical exponents
for thermodynamic functions (42) and (43) are summarized in Table 2. The corresponding
logarithmic corrections to scaling exponents are collected in Table 3.

Table 2. Critical indices of the generalized model with power-law distributed spin strength on an
annealed scale-free network in different regions of the phase diagram Figure 2b. Line 4: 3 < (λ, µ) <

5, λ = µ; region III: 3 < µ < 5, µ < λ; region IV: 3 < λ < 5, λ < µ; region V: λ, µ ≥ 5.

α αc γ γc β δ ω ωc

Line 4 (µ = λ) λ−5
λ−3

λ−5
λ−2 1 λ−3

λ−2
1

λ−3 λ− 2 λ−4
λ−3

λ−4
λ−2

Region III λ−5
λ−3

λ−5
λ−2 1 λ−3

λ−2
1

λ−3 λ− 2 λ−4
λ−3

λ−4
λ−2

Region IV µ−5
µ−3

µ−5
µ−2 1 µ−3

µ−2
1

µ−3 µ− 2 µ−4
µ−3

µ−4
µ−2

Region V, Lines 5–6, B 0 0 1 2/3 1/2 3 1/2 1/3

Similar to the case of scale-free networks, the logarithmic corrections to scaling appear
at λ = 5, µ > 5, and µ = 5, λ > 5, along Lines 5 and 6 in Figure 2b. The values of
the logarithmic correction exponents coincide with those for the usual Ising model on a
scale-free network [39–41]. However, two new types of logarithmic corrections emerge in
the model under consideration: in region 3 < (λ = µ) < 5 (line 4 in Figure 2b ) as well as
at λ = µ = 5 (point B). For λ = µ = 5, all logarithmic correction exponents are twice as
large in comparison with those for the Ising model on a scale-free network at λ = 5. In the
region 3 < (λ = µ) < 5, all logarithmic correction exponents are λ dependent. All of them
obey the scaling relations for logarithmic corrections [60–62].

Table 3. Logarithmic correction exponents of the generalized model with power-law distributed spin
strength on an annealed scale-free network in different regions. Exponents for lines 5–6 coincide with
those found previously [39–41]. Here, we find two new sets of exponents that govern logarithmic
corrections along line 4 and in point B.

α̂ α̂c γ̂ γ̂c β̂ δ̂ ω̂ ω̂c

Line 4 (µ = λ) − 3
λ−2 − 3

λ−2 0 − λ−3
2(λ−2) −

1
λ−3 − 1

λ−2 − λ−4
λ−3 −2 λ−4

λ−2
Point B −2 −2 0 −2/3 −1 −2/3 −1 −4/3

Lines 5–6 −1 −1 0 −1/3 −1/2 −1/3 −1/2 −2/3
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4. Conclusions and Outlook

The effects of structural disorder on the onset of magnetic ordering in regular (lattice)
systems is of mainstream interest in the modern theory of phase transitions and critical
phenomena [8–13]. It is well established by now that even a weak dilution by non-magnetic
components may lead to crucial changes in the behavior of magnetically ordered systems.
If such a dilution is implemented in a quenched fashion, changes in the universality class
of the Ising model [34] are governed by the Harris criterion [63]. Annealed dilution, on
the other hand, causes changes in the Ising model critical exponents via Fisher renormal-
ization [64,65]. Another textbook example of structural disorder is given by frustrations
that may be implemented in the lattice Ising model by (quenched) competing ferro- and
anti-ferromagnetic interactions and they are known to cause the spin-glass phase [32,33].

The generalized Ising model we consider here relaxes the usual condition of a fixed
spin length (spin strength) and considers it as a quenched random variable with a given
probability distribution. In the particular case where this random variable is 1 with
probability p and 0 with probability 1− p, one arrives at the familiar quenched diluted Ising
model. In this study we consider, however, another, richer case, whereby the random spin
strength obeys a power-law distribution (1) governed by the exponent µ. The model mimics
polydispersity in magnetic moments of elementary interacting spins. Being interested in
possible applications of such a model in the broad area of complex system science, we have
analyzed its behavior on an annealed scale-free network. In doing so, we make use of two
advantages: the annealed network approximation leads to self-averaging properties of
thermodynamic functions and the scale-free behavior of the node-degree distribution (2)
allows us to study competition of power laws (1), (2) in defining critical behavior.

As appeared in the course of our study, the model under consideration possesses a
number of interesting unexpected features. Some of them are summarized in Figure 2b
and Tables 1–3. The phase diagram of Figure 2b is accompanied by two others, Figure 2a,c,
that correspond to the usual Iisng model on a scale-free network (a) and to the generalized
Ising model with the power-law distributed spin strength in the complete graph (c). As
one can see from this sketch, the diagram is symmetric under µ ↔ λ interchange. This
means that both factors (i.e., node connectivity and individual spin strength) influence
criticality in a similar fashion. Moreover, the corresponding asymptotics are governed
by the smaller of the pair of parameters (µ, λ): the ’fatter’ tail of the distribution function
wins the competition in defining universality class! For very low values 2 < (µ, λ) ≤ 3,
the system remains ordered at any finite temperature. In turn, the second order phase
transition regime (µ, λ > 3) is characterized by three different sets of critical exponents (see
Table 2).

Peculiar phenomena emerge in the regions with µ = λ, where the changes in critical
exponent µ or λ dependencies occur. As one observes from Table 1, such changes are
accompanied by an emergence of logarithmic corrections in the form of Equation (44). The
values of the logarithmic correction exponents are summarized in Table 3. It is instructive
to compare this phenomenon with what happens to the critical behavior in d-dimensional
Euclidean space. There, a special role is played by a concept of an upper critical dimension
du. By definition, this is the space dimension above which the universality class is trivially
defined by the mean-field behavior [66]. A special type of logarithmic corrections to
scaling appears at the upper critical dimension (see [59]). For the scale-free networks, the
logarithmic corrections were known to appear at λ = 5, where leading exponents attain
their mean-field values [39–41]. Similar corrections also emerge for the generalized Ising
model with the power-law distributed spin strength on the complete graph at µ = 5 [26].
For the model considered here, these corrections (observed before at single points in
Figure 2a,c) are now observed throughout along lines 5, 6 in Figure 2b. The crossing point
of these lines, point B in Figure 2, is characterized by a new values of logarithmic corrections.
Moreover, another new set of logarithmic corrections appears at 3 < µ = λ < 5.
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Appendix A

In the Appendix, we evaluate integrals that enter formulas (31) and (34). In particular,
we are interested in the behavior at small ε of the following integrals:

Iµ(ε) =
∫ ∞

ε
dx

1
xµ ln cosh x, (A1)

Iλ,µ(ε) =
∫ ∞

ε
dx
∫ ∞

ε
dy

1
xλyµ

ln cosh(xy), (A2)

We will consider the region where λ, µ > 2.

Integral Iµ(ε)

Let us first consider integral (A1). At 2 < µ < 3, it does not diverge for ε → 0,
therefore its leading behavior in this limit can be evaluated by numerical integration:

Iµ(ε) = iµ + O(ε), (A3)

with
iµ =

∫ ∞

0
dx

1
xµ ln cosh x, 2 < µ < 3 . (A4)

Numerical values of this and further constants iµ are plotted as a function of µ in Figure A1.
With a further increase in µ, first, the logarithmic singularity appears at µ = 3. It can be
singled out, leading to:

I3(ε) = −
ln ε

2
+ i3 + O(ε2), (A5)

where i3 = 0.64525.
For µ > 3, to single out the leading singularities of the function under integration at

small x, we integrate twice by parts, resulting in:

Iµ(ε) = −
ε1−µ ln cosh ε

1− µ
+

ε2−µ tanh ε

(1− µ)(2− µ)
− ε3−µ

(1− µ)(2− µ)(3− µ)
+ iµ(ε), (A6)

with
iµ(ε) =

1
(µ− 1)(2− µ)

∫ ∞

ε
dx x2−µ(tanh x)2. (A7)
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Further analysis depends on the value of µ. In the region 3 < µ < 5, the integral on the
right-hand side of Equation (A7) converges at ε → 0 and its leading asymptotics can be
evaluated numerically. So, keeping the leading behavior of the first three terms in (A6)
results in:

Iµ(ε) =
ε3−µ

2(µ− 3)
+ iµ + O(ε), 3 < µ < 5, (A8)

with
iµ =

1
(µ− 1)(2− µ)

∫ ∞

0
dx x2−µ(tanh x)2. (A9)

Logarithmic singularity appears in (A7) at µ = 5, leading to:

Iµ(ε) = ε−2/4− (ln ε)/12 + i5 + O(ε), (A10)

with i5 = −0.11309.

Figure A1. Dependence of constants iµ in Equations (A3) and (A8), (A11) on µ.

For higher values of µ, analysis can be performed in a similar fashion. In particular,
for 5 < µ < 7, again integrating twice by parts, one extracts a power-law singularity from
the integral (A7):

Iµ(ε) =
ε3−µ

2(µ− 3)
− ε5−µ

12(µ− 5)
+ iµ + O(ε) , 5 < µ < 7 , (A11)

with

iµ =
2

(µ− 1)(2− µ)(3− µ)

[ ∫ ∞

0
dx x3−µ(tanh x)3 −

1
4− µ

∫ ∞

0
dx x4−µ(tanh x)2

]
. (A12)
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Summarizing the above derived expressions for the leading behavior of the integral (A1)
at small ε, we obtain the following useful formula:

Iµ(ε)− iµ '


O(ε), 2 < µ < 3 ,
−(ln ε)/2 + O(ε2), µ = 3 ,
ε3−µ/(2(µ− 3)) + O(ε), 3 < µ < 5 ,
ε−2/4− (ln ε)/12 + O(ε), µ = 5 ,
ε3−µ/(2(µ− 3))− ε5−µ/(12(µ− 5)) + O(ε), 5 < µ < 7 .

(A13)

Constants iµ for different µ can be evaluated numerically using formulas (A4), (A9)
and (A12). Their dependence on µ is shown in Figure A1. They can be also checked against
analogous constants evaluated in Ref. [45] using different integral representations.

Integral Iλ,µ(ε).

To single out leading singularities of the integral Iλ,µ(ε) at small ε, we differenti-
ate Equation (A2) with respect to ε. Due to the fundamental theorem of calculus, the
result reads:

d Iλ,µ(ε)

d ε
= −ελ−µ−1 Iλ(ε

2)− εµ−λ−1 Iµ(ε
2) , (A14)

where the asymptotic behavior of the integrals in the r.h.s. of Equation (A14) is defined by
Equation (A13) provided the substitution ε→ ε2. Consequently, the asymptotic behavior of
Jλ,µ(ε) is obtained by integrating Equation (A14) with respect to ε. In particular, at λ = µ,
Equation (A14) reduces to

d Iλ,λ(ε)

d ε
= −2 ε−1 Iλ(ε

2) , (A15)

and one readily obtains:

Iλ,λ(ε)− iλ,λ + 2iλ ln ε '



O(ε2), 2 < λ < 3 ,
(ln ε)2/2 + O(ε4), λ = 3 ,

ε6−2λ

2(λ−3)2 + O(ε2), 3 < λ < 5 ,
ε−4/8 + (ln ε)2/6 + O(ε2), λ = 5 ,

ε6−2λ

2(λ−3)2 − ε10−2λ

12(λ−5)2 + O(ε2), 5 < λ < 7 .

(A16)

Constants iλ have been defined above and numerical values of the integration constants
iλ,λ are not necessary for our analysis.

Noting that integral (A2) is symmetric with respect to interchange of its indices,

Iλ,µ(ε) = Iµ,λ(ε),

it is enough to make a further evaluation in the region µ > λ. The resulting expressions
read:

• 2 < λ < 3:

Iλ,µ(ε)− iλ,µ =



iλ ελ−µ

µ−λ + O(ελ−µ+2), 2 < µ < 3 ,

iλ
ελ−3

3−λ + ln ε
3−λ ε3−λ + O(ελ−1), µ = 3 ,

iλ
ελ−µ

µ−λ −
ε6−λ−µ

2(6−λ−µ)(µ−3) + O(ελ−µ+2), 3 < µ < 5 ,

iλ ελ−5

5−λ −
ε1−λ

4(1−λ)
+ O(ελ−3), µ = 5 ,

iλ ελ−µ

µ−λ −
ε6−λ−µ

2(6−λ−µ)(µ−3) + O(ελ−µ+2), 5 < µ < 7 .

(A17)

• λ = 3:
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Iλ,µ(ε)− iλ,µ =


ε3−µ

3−µ ln ε− ε3−µ[ i3
3−µ + 1

2(µ−3)2 ] + O(εµ−1, ε7−µ), 3 < µ < 5 ,
ε−2[i3/2− 1/8]− ε−2ln ε/2 + O(ε2), µ = 5 ,
ε3−µ

3−µ ln ε− ε3−µ[ i3
3−µ + 1

2(µ−3)2 ] + O(ε7−µ), 5 < µ < 7 .
(A18)

• 3 < λ < 5:

Iλ,µ(ε)− iλ,µ =



iλ
ελ−µ

µ−λ+
ε6−λ−µ

2(λ−3)(µ−3) + O(ελ−µ+2), 3 < µ < 5 ,

iλ
ελ−5

5−λ + ε1−λ

4(λ−3) + O(ελ−3), µ = 5 ,

iλ
ελ−µ

µ−λ + ε6−λ−µ

2(λ−3)(µ−3)−
ε10−λ−µ

12(10−λ−µ)(µ−5) + O(ελ−µ+2), 5 < µ < 7 .

(A19)

• λ = 5, 5 < µ < 7:

Iλ,µ(ε)− i5,µ =
ε5−µ

6(5− µ)
ln ε− ε5−µ[

i5
5− µ

+
1

12(µ− 5)2 ] +
ε1−µ

4(µ− 3)
+ O(ε7−µ). (A20)

• 5 < λ < 7, 5 < µ < 7:

Iλ,µ(ε)− iλ,µ = iλ
εµ−λ

λ− µ
+

ε6−λ−µ

2(λ− 3)(µ− 3)
− ε10−λ−µ

12(λ− 5)(µ− 5)
+O(ελ−µ+2). (A21)

Asymptotic estimates (A17)–(A21) together with (A16) are used in the study to obtain
expressions for the free energy of the model.
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